Kip O. Findley
Professor, Metallurgical and Materials Engineering

Education
- B.S. Colorado School of Mines
- Ph.D. Georgia Institute of Technology
Research Area
- Mechanical metallurgy
- Fatigue and fracture of advanced metal alloys
- Quantitative microstructural characterization
Teaching Focus
I teach both undergraduate and graduate level courses including:
- MT445/505: Mechanical Behavior of Materials
- MT553: Theory of Dislocations and Strengthening Mechanisms
- MT560: Failure Analysis
Publications
- S. Zhang and K.O. Findley, “Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels,” Acta Materialia, 61(6), April 2013, Pages 1895–1903.
- K.O. Findley, R.L. Cryderman, A.B. Nissan, D.K. Matlock, “The Effects of Inclusions on Fatigue Performance of Steel Alloys,” in AISTech 2013 Proceedings, 2013.
- Enloe, C. M., K. O. Findley, C. M. Parish, M. K. Miller, B. C. De Cooman, and J. G. Speer. “Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel.” Scripta Materialia, 68: 55-58 (2012); http://dx.doi.org/10.1016/j.scriptamat.2012.09.027.
- Muckelroy, N. C., Findley, K. O., & Bodnar, R. L. (2013). Microstructure and Mechanical Properties of Direct Quenched Versus Conventional Reaustenitized and Quenched Plate. Journal of Materials Engineering and Performance, 22(2), 512-522.
- K.O. Findley, D.K. Matlock, J.G. Speer, “Microstructural Effects on Fatigue Performance of Advanced Line Pipe and Plate Steels,” Proceedings, The International Symposium on the Recent Developments in Plate Steels, AIST, Warrendale, PA, 2011, pp. 51-59.
- K.Partin, K.O. Findley, C.J. Van Tyne, “Microstructural and alloy influence on the low-temperature strengthening behavior of commercial steels used as plates,” Materials Science and Engineering A, Vol. 527, 2010, pp. 5143-5152.
- K.O. Findley, J.L. Evans, A. Saxena, “A critical assessment of fatigue crack nucleation and growth models for Ni- and Ni,Fe-based superalloys”, International Materials Reviews, Vol. 56, (2011), pp. 49-71. DOI: 10.1179/095066010X12777205875796.
- K.O. Findley, A. Saxena., “Low Cycle Fatigue in Rene 88DT at 650°C: Crack Nucleation Mechanisms and Modeling,” Met. and Mat. Trans. A, 37A: 1469-1475 (2006).
Professional Societies
- AIST – Metallurgy, Products, Processing, and Applications Committee
- ASM – Action in Education Committee
- TMS – Mechanical Behavior of Materials Committee
- ASEE
Contact
303-273-3906
Hill Hall 260
kfindley@mines.edu